Diagonalisation (Réduction)

- Objectifs
- 2 Valeurs propres et vecteurs propres
- 3 Endomorphismes/matrices diagonalisables
- 4 Endomorphismes et Matrices Trigonalisables

$$E = \mathbb{R}^n$$

dans ce chapitre. mais ça marche aussi avec E espace vectoriel autre.

- 4 ロ ト 4 週 ト 4 差 ト 4 差 ト - 差 - 釣 9 C C

Diagonalisation 2 / 40

Plan

- Objectifs
- 2 Valeurs propres et vecteurs propres
- 3 Endomorphismes/matrices diagonalisables
- 4 Endomorphismes et Matrices Trigonalisables

Diagonalisation

Diagonalisable - trigonalisable

Définition

u un endomorphisme de *E*.

- u est diagonalisable si la matrice de u dans une certaine base \mathcal{B} est diagonale.
- u est (trigonalisable) si la matrice de u dans une certaine base \mathcal{B} est triangulaire supérieure.

Diagonalisation 4 / 40

Définition

A une matrice carrée .

- A est diagonalisable si $A = PDP^{-1}$ avec D diagonale et P inversible.
- A est trigonalisable si $A = PTP^{-1}$ avec T triangulaire supérieure et P inversible.

Diagonalisation 5 / 40

Objectifs du chapitre

- Diagonaliser u = trouver une base dans laquelle la matrice de u est diagonale
- Diagonaliser A = trouver P et D tels que $A = PDP^{-1}$ supérieure.

Application : A^n , e^A , reconnaître des projections ou symétrie, suites récurrentes, systèmes d'équations différentielles....

Diagonalisation 6 / 40

Plan

- 1 Objectifs
- 2 Valeurs propres et vecteurs propres
- 3 Endomorphismes/matrices diagonalisables
- 4 Endomorphismes et Matrices Trigonalisables

◆ロト ◆個ト ◆ 恵ト ◆ 恵 ・ り Q ②

Diagonalisation 7 / 40

Définition

u endomorphisme de E.

$$u(x) = \lambda x$$

- Le vecteur x (non nul) est un (vecteur propre) de u
- $\lambda \in \mathbb{R}$ est une (valeur propre) de u

Remarque: 0 peut être une valeur propre.

Mais $\vec{0}$ (n'est pas) un vecteur propre

Diagonalisation 8 / 40

Exercice

Dans \mathbb{R}^2 , on considère l'endomorphisme f défini par

$$f(x,y) = (4x - y, -2x + 5y)$$

- ① Calculer l'image du vecteur (-1,2) et du vecteur (1,1).
- ② En déduire que ce sont des vecteurs propres de f, à quelles valeurs propres sont-ils associés?

Notions. Si on a $u(x) = \lambda x$ avec $x \neq 0$, alors

- le vecteur x vecteur propre de u.
- le scalaire $\lambda \in \mathbb{R}$ est une valeur propre de u associée à x.

4□ > 4□ > 4 = > 4 = > = 90

Diagonalisation 9 / 40

Définition

- Le (spectre) Sp(u) est l'ensemble des valeurs propres.
- Si $\lambda \in \mathbb{R}$ est une valeur propre de u, le (sous-espace propre associé à λ) est

$$E_{\lambda} = \{x \in E \text{ tels que } u(x) = \lambda x\}$$

Il contient les vecteurs propres associés à la valeur propre λ , plus le vecteur nul.

<ロト <個ト < 重ト < 重ト < 重 ・ りへ@

Diagonalisation 10 / 40

Propriétes des éléments propres

Théorème.

Le sous-espace propre E_{λ} est stable par u autrement dit

$$u(E_{\lambda}) \subset E_{\lambda}$$
.

Démonstration. Soit $x \in E_{\lambda}$. alors $u(x) = \lambda x \in E_{\lambda}$

Diagonalisation 11 / 40

Propriété.

Toute famille de vecteurs propres associés à des valeurs propres distinctes est libre.

Démonstration. Par récurrence sur $n \in \mathbb{N}^*$, montrons que

toute famille de *n* vecteurs propres associée à des valeurs propres distinctes est libre.

 Une famille de 1 vecteur propre est libre car il est non nul par définition.

Diagonalisation 12 / 40

• Soit $n \in \mathbb{N}^*$ tel que

toute famille de *n* vecteurs propres associée à des valeurs propres distinctes est libre.

Soient $(x_1, x_2, \ldots, x_{n+1})$ une famille de n+1 vecteurs propres associés aux valeurs propre $\lambda_1, \ldots, \lambda_{n+1}$ (distinctes). Soient a_i des scalaires tels que

$$\sum_{i=1}^{n+1} a_i x_i = 0 \quad \Rightarrow \quad a_{n+1} x_{n+1} = -\sum_{i=1}^n a_i x_i \quad (\star)$$

On applique u à l'égalité et par linéarité, il vient :

$$a_{n+1}u(x_{n+1}) = -\sum_{i=1}^{n} a_i u(x_i)$$

Or, on a par définition $u(x_i) = \lambda_i x_i$ pour tout $i \in [1, n+1]$, donc

$$\lambda_{n+1}(a_{n+1}x_{n+1}) = -\sum_{i=1}^{n} a_i \lambda_i x_i$$

Diagonalisation 13 / 40

On utilise $(\star)a_{n+1}x_{n+1} = -\sum_{i=1}^n a_ix_i$ à gauche de l'égalité :

$$\Rightarrow \lambda_{n+1}\left(-\sum_{i=1}^n a_i x_i\right) = -\sum_{i=1}^n a_i \lambda_i x_i$$

Donc

$$\sum_{i=1}^n a_i (\lambda_{n+1} - \lambda_i) x_i = 0$$

Or x_1, \ldots, x_n est une famille de n vecteurs propres associée à des valeurs propres distinctes, donc elle est libre, donc $\forall i = 1 \ldots n$, on a

$$a_i(\lambda_{n+1}-\lambda_i)=0$$

Les λ étant distincts, on a donc $a_i = 0, \forall i = 1 \dots n$. En reportant dans l'égalité de départ, on obtient

$$a_{n+1}x_{n+1}=0$$

Donc $a_{n+1} = 0$ car $x_{n+1} \neq 0$. Donc tous les a_i sont nuls et la famille est libre.

Exemples de recherche d'éléments propres

Exemple 1. Soit $\alpha \in \mathbb{R}$. On considère l'homothétie de rapport α

$$h_{\alpha}: E \rightarrow E.$$
 $x \mapsto \alpha x$

Déterminons ses valeurs propres et vecteurs propres.

Diagonalisation 15 / 40

Exemple 2. Soit $F \oplus G = E$

$$p: E \to E$$

la projection sur F parallèlement à G. Déterminons ses valeurs propres et vecteurs propres.

Exercice

Soit $s: E \to E$ la symétrie par rapport à F parallèlement à G. Déterminer les valeurs propres et les vecteurs propres de s.

Diagonalisation 16 / 40

A connaître

Si on obtient une matrice diagonale, avec sur la diagonale :

- ullet α partout, alors on a une homothétie de rapport α
- des 0 et 1 partout, alors on a une projection sur E_1 parallèlement à E_0 .
- des -1 et 1 partout, alors on a une symétrie par rapport à E_1 parallèlement à E_{-1} .

Diagonalisation 17 / 40

Le point de vue matriciel

A associé à $u \rightarrow \text{valeurs propres et vecteurs propres de } u$.

Définition

- λ est une valeur propre de A si $(A \lambda I_n)$ est non inversible : $\det(A \lambda I_n) = 0$.
- Sp(A) le spectre de A est l'ensemble de ses valeurs propres
- $X \neq \vec{0}$ est un vecteur colonne propre de A si $AX = \lambda X$
- Le (sous-espace propre associé à la valeur propre λ) est

$$E_{\lambda}(A) = \operatorname{Ker}(A - \lambda I_n) = \{X \in M_{n,1}(\mathbb{R}), AX = \lambda X\}$$

Remarque: A est inversible \Leftrightarrow 0 n'est pas une valeur propre de A.

←□ ト ←□ ト ← 亘 ト ← 亘 ・ 夕 へ ○

Diagonalisation 18 / 40

Polynôme caractéristique et valeur propre

Définition

Le polynôme caractéristique de la matrice A est

$$P_A(\lambda) = \det(A - \lambda I_n)$$

On a

$$P_A(\lambda) = (-1)^n \lambda^n + (-1)^{n-1} \operatorname{tr}(A) \lambda^{n-1} + \dots + \operatorname{det}(A),$$

Remarque : tr(A) (la « trace » de A) est la somme des coefficients diagonaux de A.

Exemple pour n = 2:

Diagonalisation 19 / 40

Propriété.

Deux matrices semblables ont le même polynôme caractéristique.

Démonstration. Soit A et B deux matrices semblable $A = PBP^{-1}$.

$$A - \lambda I = PBP^{-1} - \lambda PIP^{-1} = P(B - \lambda I)P^{-1}$$

donc

$$P_A(\lambda) = \det(A - \lambda I) = \det(P(B - \lambda I)P^{-1})$$
$$= \det(P)\det(B - \lambda I)\det(P)^{-1}$$
$$= \det(B - \lambda I) = P_B(\lambda)$$

Diagonalisation 20 / 40

Si A et B sont deux matrices représentant le même endomorphisme u dans des bases différentes, alors A et B ont le même polynôme caractéristique.

Définition

Le (polynôme caractéristique) de *u* est

$$P_u(\lambda) = P_A(\lambda)$$

avec A matrice de u dans une base.

Remarque: par exemple dans la base canonique.

Diagonalisation 21 / 40

Théorème.

Les valeurs propres sont les racines du polynôme caractéristique.

Démonstration. λ est une valeur propre de A

$$\Leftrightarrow \det(A - \lambda I) = 0$$

$$\Leftrightarrow$$
 $P_A(\lambda) = 0$

 λ est une racine du polynôme caractéristique

Diagonalisation 22 / 40

Corollaire.

- Un endomorphisme d'un espace vectoriel de dimension n a au plus n valeurs propres distinctes.
- Une matrice carrée de taille *n* a au plus *n* valeurs propres distinctes.

Démonstration. Le polynôme caractéristique est de degré n. Donc il admet n racines distinctes au maximum, donc n valeurs propres au maximum.

Diagonalisation 23 / 40

Définition

 λ est une valeur propre de multiplicité m si λ est une racine de multiplicité m du polynôme caractéristique.

Exemple : Déterminer les valeurs propres de l'endomorphisme u de \mathbb{R}^3 dont la matrice dans la base canonique est

$$A = \begin{pmatrix} 1 & 4 & 2 \\ 0 & -3 & -2 \\ 0 & 4 & 3 \end{pmatrix}$$

Diagonalisation 24 / 40

Exercice

Déterminer les valeurs propres de l'endomorphisme u dont la matrice dans la base canonique est

$$A = \begin{pmatrix} 3 & 1 & 1 \\ 0 & 2 & 0 \\ 1 & 1 & 3 \end{pmatrix}$$

Notions. Les valeurs propres sont les racines du polynômes caractéristiques $P(\lambda) = det(A - \lambda I_n)$.

Diagonalisation 25 / 40

Sous-espace propre associé à une valeur propre

Racines du polynôme caractéristique \rightarrow valeurs propres

$$Sp(u) = \{\lambda_1, \lambda_2, \ldots\}$$

Pour chaque valeur propre ightarrow ses vecteurs propres et son espace propre

- valeur propre λ_1 , on résout l'équation $u(x) = \lambda_1 x$. Les solutions $= E_{\lambda_1}$.
- valeur propre λ_2 , on résout l'équation $u(x) = \lambda_2 x$. Les solutions $= E_{\lambda_2}$.
- etc.

Diagonalisation 26 / 40

Théorème.

 λ une valeur propre de d'ordre de multiplicité m :

$$1 \leqslant \dim(E_{\lambda}) \leqslant m$$

Remarque: Si λ de multiplicité 1, alors dim $(E_{\lambda}) = 1$.

Diagonalisation

Exercice

Soit l'endomorphisme u dont la matrice dans la base canonique est

$$A = \begin{pmatrix} 3 & 1 & 1 \\ 0 & 2 & 0 \\ 1 & 1 & 3 \end{pmatrix}$$

Déterminer les sous-espaces propres associés aux valeurs propres : 2 (multiplicité 2) et 4 (multiplicité 1).

Notion. Le sous-espace propre associé à la valeur propre λ est l'ensemble des solutions de l'équation $u(x) = \lambda x$ avec x un vecteur inconnu.

Diagonalisation 28 / 40

Et il en reste quoi?

- ① 2 est une valeur propre de l'endomorphisme *u* signifie que...
- ② C'est quoi l'espace propre associé à la valeur propre 2 de u?
- ③ Si A est la matrice de u, $det(A \lambda I)$ est
- 4 à quoi ça sert de calculer ce déterminant?

Diagonalisation 29 / 40

Réponses

- 2 est une valeur propre de l'endomorphisme u signifie que... il existe x non nul tel que u(x) = 2x
- C'est quoi l'espace propre associé à la valeur propre 2 de u? Les solutions de l'équation u(x) = 2x.
- 3 Si A est la matrice de u, $det(A \lambda I)$ est le polynôme caractéristique de A et de u.
- a quoi ça sert de calculer ce déterminant? à trouver les valeurs propres, ce sont les racines de ce polynôme.

30 / 40

Diagonalisation

Plan

- 1 Objectifs
- 2 Valeurs propres et vecteurs propres
- 3 Endomorphismes/matrices diagonalisables
- 4 Endomorphismes et Matrices Trigonalisables

Diagonalisation

Diagonalisation et vecteurs propres

Propriété.

 $\overline{\text{Diagonaliser } u} = \text{donner la base } \mathcal{B}' \text{ de vecteurs propres et }$

$$\mathsf{M}_{\mathcal{B}'}(u) = \begin{pmatrix} \lambda_1, & 0 & 0 & \cdots \\ 0 & \lambda_2 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots \end{pmatrix}$$

avec $\lambda_1, \lambda_2, \ldots$ les valeurs propres (dans l'ordre des vecteurs propres)

Diagonalisation 32 / 40

Propriété.

Diagonaliser A c'est écrire

$$A = PDP^{-1}$$

avec $P = P(\mathcal{C}, \mathcal{B}')$ matrice de passage de la base canonique à une base de vecteur propre \mathcal{B}'

$$\begin{pmatrix} \lambda_1, & 0 & 0 & \cdots \\ 0 & \lambda_2 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots \end{pmatrix}$$

matrice diagonale contenant $\lambda_1; \lambda_2, \dots$ les valeurs propres.

Remarque : Il suffit d'écrire la formule. On ne cherche pas à la calculer!

10/10/12/12/2

Diagonalisation 33 / 40

La condition de diagonalisation

Théorème.

Dans \mathbb{R}^n , u ou A est diagonalisable \Leftrightarrow

- ① le polynôme caractéristique P est scindé sur \mathbb{R} (toutes les racines sont réelles).
- ② La dimension de chaque sous-espace propre E_{λ} est égal à la multiplicité de la valeur propre λ .

Autrement dit, on a

$$P(\lambda) = (\lambda - \lambda_1)^{m_1} (\lambda - \lambda_2)^{m_2} \cdots (\lambda - \lambda_p)^{m_p}$$

et

$$\dim(E_{\lambda_1}) = m_1, \dim(E_{\lambda_2}) = m_2, \cdots, \dim(E_{\lambda_p}) = m_p$$

En particulier, la somme des dimensions des sous-espaces propres est égale à n.

) Q (P

Propriété.

Une base de diagonalisation = la réunion des bases de chacun des sous-espaces propres.

Un cas particulier :

Propriété.

Si le polynôme caractéristique P possède n racines distinctes, alors u (A) est diagonalisable.

Diagonalisation

Exemple : On considère l'endomorphismes f de \mathbb{R}^2 dont la matrice dans la base canonique est

$$A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$

Dire si cet endomorphisme est diagonalisable, et diagonaliser l'endomorphisme dans ce cas.

Diagonalisation 36 / 40

Exercice

On considère l'endomorphismes g de \mathbb{R}^3 dont la matrice dans la base canonique est

$$B = \begin{pmatrix} 4 & 1 & -4 \\ 2 & 3 & -4 \\ 2 & 1 & -2 \end{pmatrix}.$$

Dire si cet endomorphisme est diagonalisable, et diagonaliser l'endomorphisme dans ce cas.

Notion. Un endomorphisme est diagonalisable si son polynôme caractéristique est scindé et si la dimension de chaque espace propre correspond à la multiplicité de la valeur propre correspondante.

◆ロト ◆個ト ◆重ト ◆重ト ■ からの

Diagonalisation 37 / 40

Plan

- 1 Objectifs
- 2 Valeurs propres et vecteurs propres
- 3 Endomorphismes/matrices diagonalisables
- 4 Endomorphismes et Matrices Trigonalisables

Diagonalisation 38 / 40

Rappel u est trigonalisable \Leftrightarrow base de E dans laquelle T matrice de u est triangulaire supérieure. A est trigonalisable $\Leftrightarrow A = PTP^{-1}$ avec P inversible et T triangulaire supérieure.

Théorème.

u (ou A) est trigonalisable \Leftrightarrow son polynôme caractéristique P est scindé dans $\mathbb R$ (toutes les racines réelles).

Propriété.

Si u (ou A) est trigonalisable, la diagonale de la matrice T contient les valeurs propres.

Remarque: Idem pour une matrice.

Diagonalisation 39 / 40

Exemple : Soit u l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est

$$M = \begin{pmatrix} 0 & 3 & 3 \\ -1 & 8 & 6 \\ 2 & -14 & -10 \end{pmatrix}$$

L'endomorphisme u est-il diagonalisable? trigonalisable? Trigonaliser u si c'est possible.

Diagonalisation 40 / 40