Révisions

Intégrale

Afficher une page à la fois seulement.

Une page : une question page suivante : la réponse.

C'est quoi la primitive d'une fonction f?

fonction dérivable F vérifiant F' = f.

Si f est continue sur un intervalle, que peut-on dire sur ses primitives?

Les primitives existent et diffèrent d'une constante.

C'est quoi $\int_a^b f(x) dx$?

$$\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

avec F une primitive de f sur [a, b]. C'est l'aire entre la courbe et l'axe des abscisses

C'est l'aire entre la courbe et l'axe des abscisses

Donner F l'unique primitive de f sur I qui s'annule en a.

pour tout
$$x \in I$$
,

$$F(x) = \int_{a}^{x} f(t) dt$$

si f est une fonction paire, alors $\int_{-a}^{a} f(t)dt = ?$

Réponse $5\,$

$$2\int_0^a f(t)dt$$

si f est une fonction impaire, alors $\int_{-a}^{a} f(t)dt = ?$

Réponse 6 =0

Si f est une fonction T-périodique, alors $\int_{a+T}^{b+T} f(t)dt = ?$

$$\int_{a}^{b} f(t)dt$$

Si f est une fonction T-périodique, alors $\int_a^{a+T} f(t)dt = ?$

$$\int_0^T f(t)dt$$

Donner la primitive de

 e^{a}

Réponse 9 e^x

Donner la primitive de

 a^{\cdot}

Réponse 10 $\frac{a^x}{\ln a}$

Donner la primitive de

 $\cos x$

Réponse 11 $\sin x$

Donner la primitive de

 $\sin x$

Réponse 12 $-\cos x$

Donner la primitive de

 $\frac{1}{\cos^2(x)}$

Réponse 13 $\tan x$

Donner la primitive de

 $1 + \tan^2 x$

Réponse 14 $\tan x$

Donner la primitive de

 $\tan x$

Réponse 15 $-\ln|\cos x|$

Donner la primitive de

 x^k

avec $k \neq -1$

$$\frac{x^{k+1}}{k+1}$$

Donner la primitive de

$$\frac{1}{x^k}$$

avec $k \neq 1$

$$\frac{1}{1-k} \frac{1}{x^{k-1}}$$

Donner la primitive de

 $\frac{1}{x}$

Réponse 18 $\ln |x|$

Donner la primitive de

$$\frac{1}{1+x^2}$$

Réponse 19 $\operatorname{Arctan} x$

Donner la primitive de

$$\frac{1}{\sqrt{1-x^2}}$$

Si u et g sont des fonctions, quelle est la primitive de $u' \times g(u)$?

G(u) avec G une primitive de g.

Si \boldsymbol{u} est une fonction, donner la primitive de

$$u' \times u^k \qquad (k \neq -1)$$

 $\frac{u^{k+1}}{k+1}$

Si u est une fonction, donner la primitive de

$$\frac{u'}{u^k}$$
 $(k \neq 1)$

Réponse 23 $\frac{1}{(1-k)u^{k-1}}$

Si u est une fonction, donner la primitive de

$$\frac{u}{1+u^2}$$

Réponse 24 $\operatorname{Arctan}(u)$

Si u est une fonction, donner la primitive de

$$\frac{u}{\sqrt{1-u^2}}$$

Réponse 25 $\operatorname{Arcsin}(u)$

Si \boldsymbol{u} est une fonction, donner la primitive de

 $u' e^u$

Réponse 26 e^u

Si u est une fonction, donner la primitive de $u'\sin(u)$

Réponse 27 $-\cos(u)$

Si u est une fonction, donner la primitive de $u'\cos(u)$

Réponse 28 $\sin(u)$

Comment primitiver une fonction contenant des produits et des puissances de sinus/cosinus?

On linéarise : On remplace les sin et cos par les formules d'Euler, on développe tout, puis on regroupe les $e^{i\theta}$ par paire pour retrouver des sinus et cosinus par formule l'Euler. L'expression finale peut se primitiver facilement.

Que doit-on faire en premier pour primitiver une fraction rationnelle?

On la décompose en éléments simples.

Donner la primitive de

$$\frac{1}{(ax+b)^k} \quad (k \neq 1)$$

$$\frac{1}{a(1-k)}\frac{1}{(ax+b)^{k-1}}$$

Donner la primitive de

$$\frac{1}{ax+b}$$

$$\frac{1}{a}\ln|ax+b|$$