Révisions

Intégrale (2)

Afficher une page à la fois seulement. Une page : une question

page suivante : la réponse.

Donner la formule d'intégration par partie.

$$\int_{a}^{b} u'(x)v(x) \, \mathrm{d}x$$

$$= \left[u(x)v(x) \right]_a^b - \int_a^b u(x)v'(x) \, \mathrm{d}x.$$

Comment calculer une primitive du ln?

On calcule $\int_1^x \ln(t)dt$ par une intégration par partie, en considérant $\int_1^x 1 \times \ln(t)dt$. On primitive le 1 et on dérive le ln.

Comment intégrer des fonctions de la forme $f(x) = P(x) e^{ax}$ ou $f(x) = P(x) \sin(ax)$ ou $f(x) = P(x) \cos(ax)$, avec P un polynôme et a une constante?

Intégrations par partie successives en dérivant le polynôme P jusqu'à ce qu'il disparaisse.

Donner la technique pour faire le changement de variable $t=\varphi(x) \text{ dans l'intégrale } \int_a^b f(x) \, \mathrm{d}x.$

- 1. les bornes $x = a \to t = \varphi(a)$ et $x = b \to t = \varphi(b)$.
- 2. on dérive $t = \varphi(x)$ pour avoir $dt = \varphi'(x) dx$
- 3. $\varphi'(x) dx \to dt$, et $\varphi(x) \to t$

Donner la technique pour faire le changement de variable $x=\psi(t) \text{ dans l'intégrale } \int_a^b f(x) \,\mathrm{d}x.$

- 1. On cherche α tel que $\psi(\alpha)=a$ et β tel que $\psi(\beta)=b$.
- 2. on dérive $x=\psi(t)$ pour avoir $\mathrm{d} x=\psi'(t)\,\mathrm{d} t$ (en "dérivant" $x=\psi(t))\,;$
- 3. On remplace : $dx \to \psi'(t) dt$, $x \to \psi(t)$ et les bornes.

Donner en bref la méthode pour trouver la primitive de

 $\frac{dx+e}{ax^2+bx+c}$

- 1. Si $dx \neq 0$: on sépare l'élément simple en deux fractions $\frac{u'}{u}$ (de primitive en $\ln |u|$) et $\frac{1}{ax^2+bx+c}$.
- 2. Si $bx \neq 0$ forme canonique en bas, Puis changement de variable pour se ramener à $\frac{1}{At^2+B}$
- 3. Factoriser B
- 4. Deuxième changement de variable pour avoir $\frac{1}{y^2+1}$.

Dans un calcul d'intégrale, comment transformer $\frac{dx+e}{ax^2+bx+c}$ en somme $C\frac{u'}{u}+\frac{K}{ax^2+bx+c}$ (avec C,K des constantes)?

On fait apparaître au numérateur la dérivée du dénominateur en factorisant de force par $\frac{d}{2a}$. Puis on fait apparaître b. On sépare d'un coté 2ax + b et de l'autre le reste des constantes.

Comment transformer une fraction $\frac{1}{ax^2+bx+c}$ en une fraction de la forme $\frac{1}{t^2+B}$ dans un calcul d'intégrale?

On met le polynôme le $ax^2 + bx + c$ sous forme canonique, puis on pose comme changement de variable ce qui est à l'intérieur du carré.

Comment calculer l'intégrale $\int_a^b \frac{1}{At^2+B} dt$ avec A et B deux nombres réels strictement positifs ?

- 1. On factorise B au dénominateur pour faire apparaı̂tre le +1.
- 2. On rentre tout dans le carré:
- 3. On fait le changement de variable $y=\sqrt{\frac{A}{B}}t$ (le terme dans le carré)

On obtient $\frac{1}{n^2+1}$ et on peut faire la primitive.

Quand on doit primitiver un quotient de polynômes trignonométrique, que faut-il essayer en premier?

On tente un changement de variable $u = \cos(x)$, $u = \sin(x)$ ou $u = \tan(x)$.