Révisions

Equations différentielles linéaires

Afficher une page à la fois seulement.

Une page : une question page suivante : la réponse.

Sur quel type d'équation du premier ordre porte ce cours? Et ça veut dire quoi, premier ordre?

$$\alpha(t)y'(t) + \beta(t)y(t) = \gamma(t)$$

avec α, β, γ des fonctions. premier ordre signifie que y est dérivé une seule fois.

Donner brièvement les étapes d'une résolution d'équation différentielle linéaire du premier ordre ou du second ordre.

- 1. solutions y_h homogène.
- 2. On devine y_p la forme d'une solution particulière. On reporte y_p dans l'équation (E) afin de la déterminer complètement.
- 3. $y = y_h + y_p$
- 4. Conditions initiales pour déterminer les constantes.

Pour résoudre

$$\alpha(t)y'(t) + \beta(t)y(t) = \gamma(t)$$

quelle est la première opération à faire?

Tout diviser par $\alpha(t)$ pour ne plus rien avoir devant y'.

Donner les solutions de l'équation différentielle $y'+a(t)y=0. \label{eq:controlle}$

Comment s'appelle ce type d'équation?

$$y_h(t) = \lambda e^{-A(t)}$$

où λ est une constante et A est une primitive de a. C'est une équation homogène.

$$y' + ay = P(t)$$

où a constante et P un polynôme de degré n. Donner la forme d'une solution particulière y_p .

 $y_p = R(t)$ est un polynôme inconnu de degré n

$$y' + ay = Pe^{mt}$$

où a, m constantes et P un polynôme de degré n. Donner la forme d'une solution particulière y_p .

$$y_p = Qe^{mt}$$

avec Q un pôlynome inconnu de degré n si $m \neq -a$ de degré n+1 si m=-a.

$$y' + ay = P\cos(mt)$$
 ou $P(t)\sin(mt)$

Donner la méthode complexe pour une solution particulière y_p .

équation complexe $z'+az=P(t)e^{imt}.$ On cherche $z_p(t)=R(t)e^{imt}$ avec R un polynôme de même degré que P.

- Si $b(t) = P \cos(mt)$, alors $y_p = \text{Re}(z_P)$.
- SI $b(t) = P(t)\sin(mt)$, alors $y_p = \text{Im}(z_P)$.

On cherche une solution particulière y_p de y' + a(t)y = b(t) et les solutions simples ne marchent pas. Décrire la méthode à employer.

Variation de la constante : On prend comme modèle la solution homogène $y_h = \lambda e^{-A(t)}$. On pose $y_p(t) = \lambda(t)e^{-A(t)}$ avec $\lambda(t)$ une fonction à déterminer. On reporte dans l'équation différentielle, on isole λ' et on primitive pour trouver λ . On remplace dans y_p pour finir.

Quelle est la forme des solutions d'une équation différentielle linéaire? (premier ordre et second ordre)

$$y = y_p + y_h$$

avec y_h les solutions de l'équation homogène et y_p une solution particulière.

A quoi servent les conditions initiales? (premier ordre et second ordre)

à déterminer la ou les constantes dans les solutions homogènes y_h

Sur quel type d'équation du second ordre porte ce cours ? Et ça veut dire quoi, second ordre ?

$$ay'' + by' + cy = d(t)$$

 $\mbox{avec } a,b,c \mbox{ des constantes.}$ se cond ordre signifie que y est dérivé deux fois.

Donner les solutions de

$$ay'' + by' + cy = 0$$

$$ar^2 + br + c = 0$$
 avec son discriminant Δ .

Si $\Delta > 0$, alors deux racines r_1 et r_2 . Les solutions sont $y_h(t) = \lambda e^{r_1 t} + \mu e^{r_2 t}$

Si $\Delta = 0$, unique racine r_0 . Les solutions sont

$$y_h(t)=(\lambda t+\mu)\,{\rm e}^{r_0t}$$
 Si $\Delta<0,$ deux racines complexes conjuguées $r=\alpha+i\beta$ et

Si
$$\Delta < 0$$
, deux racines complexes conjuguees $r = \alpha + \overline{r} = \alpha - i\beta$. Les solutions sont $y_h(t) = e^{\alpha t} \left(\lambda \cos(\beta t) + \mu \sin(\beta t) \right)$ avec λ, μ des constantes.

Donner y_p une solution particulière de $ay'' + by' + cy = P(t) e^{mt}$, avec P polynome de degré n et m est la racine double de l'équation caractéristique

$$y_p(t) = t^2 \times R(t) e^{mt}$$

où R est un polynôme inconnu de degré n. On reporte y_p dans l'équation (E) pour déterminer les coefficients de R.

Donner y_p une solution particulière de $ay'' + by' + cy = P(t) e^{mt}$, avec P polynome de degré n et m n'étant pas une racine de l'équation caractéristique.

$$y_p(t) = R(t) e^{mt}$$

où R est un polynôme inconnu de degré n. On reporte y_p dans l'équation (E) pour déterminer les coefficients de R.

Donner y_p une solution particulière de $ay'' + by' + cy = P(t) e^{mt}$, avec P polynome de degré n et m est une racine simple de l'équation caractéristique.

$$y_p(t) = t \times R(t) e^{mt}$$

où R est un polynôme inconnu de degré n. On reporte y_p dans l'équation (E) pour déterminer les coefficients de R.

Donner la méthode pour trouver y_p une solution particulière de $ay'' + by' + cy = P(t)\cos(mt)$ ou $= P(t)\sin(mt)$, avec P polynôme de degré n et m constantes.

- équation complexe $az'' + bz' + cz = P(t) e^{imt}$ On cherche une solution particulière z_p . Puis on revient dans \mathbb{R} :
 - Si le second membre était $P(t)\cos(mt)$, alors $y_p = \text{Re}(z_p)$
 - Si le second membre était $P(t)\sin(mt)$, alors $y_p = \text{Im}(z_p)$

Donner la méthode pour trouver d y_p une solution particulière de $ay'' + by' + cy = P(t) e^{kt} \cos(mt)$ ou $= P(t) e^{kt} \sin(mt)$, avec P polynôme de degré n et m, k constantes.

on passe aussi aux complexes

$$az'' + bz' + cz = P(t) e^{(k+im)t}$$

et après, même méthode que précédemment.

Si on doit chercher une solution particulière d'une equation différentielle (premier ou second ordre) ayant pour second membre $d_1(t) + d_2(t)$, que faire?

Principe de superposition. On fait une solution particulière y_{p1} avec le second membre d_1 , puis une solution particulière y_{p2} avec le second membre d_2 . La solution particulière est alors $y_p = y_{p1} + y_{p2}$