30. Séries de Fourier

1. Intégrale d'une fonction périodique

Rappel Une fonction réelle f est dite périodique de période T (ou T-périodique) si f(x+T)=f(x). Le graphe de la fonction f a un motif de longueur T qui se répète.

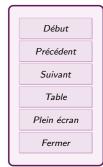
Propriété 1.

Soit T un nombre réel strictement positif et f une fonction T-périodique et continue par morceaux définie sur \mathbb{R} . Pour tout $\alpha \in \mathbb{R}$, on a

$$\int_{\alpha}^{\alpha+T} f(t)dt = \int_{0}^{T} f(t)dt.$$

Autrement dit, l'intégrale de f est la même sur tout intervalle de longueur la période T.

TRES IMPORTANT! Ce résultat signifie que toutes ces intégrales du cours de la forme \int_0^T peuvent être calculées sur n'importe quel intervalle de longueur T. C'est à dire qu'on peut remplacer \int_0^T par $\int_{\alpha}^{\alpha+T}$ avec α un réel, ou $\int_{-T/2}^{T/2}$ pour intégrer sur un intervalle symétrique en 0.



2. Coefficients de Fourier et série de Fourier

2.1. Définitions générales

Définition 2.

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction T-périodique et continue par morceaux sur \mathbb{R} . On pose $\omega = \frac{2\pi}{T}$ et l'on note

$$a_0(f) = \frac{1}{T} \int_0^T f(t)dt$$

$$\forall n \in \mathbb{N}^*, \quad a_n(f) = \frac{2}{T} \int_0^T f(t) \cos(\omega n t) dt \quad \text{et} \quad b_n(f) = \frac{2}{T} \int_0^T f(t) \sin(\omega n t) dt.$$

Les nombres réels $a_0(f), a_1(f), a_2(f), \dots, b_1(f), b_2(f) \dots$ sont appelés les coefficients de Fourier de f.

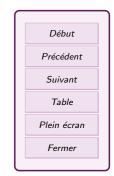
Remarque: Lorsque $T=2\pi$, on a $\omega=1$.

Définition 3.

On appelle (série de Fourier) de f l'addition formelle infinie :

$$S(f)(t) = a_0(f) + \sum_{n=1}^{+\infty} (a_n(f)\cos(\omega nt) + b_n(f)\sin(\omega nt))$$

Remarque : Si on arrête la somme à N, on appelle ça $S_N(f)$ la somme partielle de la série de Fourier. La notation S(f)(t) n'a de sens pour pour les $t \in \mathbb{R}$ tels que la suite de nombres réels $(S_N(f)(t))$ est convergente. Le problème est de savoir en quels $t \in \mathbb{R}$ la suite $(S_N(f)(t))_{N \in \mathbb{N}}$ converge et si en ces points S(f)(t) = f(t).



2.2. Parité, imparité

Propriété 4.

Soit f une fonction T-périodique continue par morceaux.

— Si
$$f$$
 est paire, alors $a_0(f) = \frac{2}{T} \int_0^{\hat{T}/2} f(t) dt$ et pour tout $n \in \mathbb{N}^*$,

$$b_n(f) = 0,$$
 $a_n(f) = \frac{4}{T} \int_0^{T/2} f(t) \cos(n\omega t) dt.$

— Si f est impaire, alors pour tout $n \in \mathbb{N}$, $a_n(f) = 0$ et pour tout $n \in \mathbb{N}^*$,

$$b_n(f) = \frac{4}{T} \int_0^{T/2} f(t) \sin(n\omega t) dt.$$

Exemple. Soit f la fonction impaire, 2π -périodique qui vaut 1 sur l'intervalle $]0,\pi[$, et 0 en 0 et π . Calculer les coefficients de Fourier de f et écrire sa série de Fourier.

Exercice 1

Soit la fonction f paire et 2π -périodique telle que :

$$\forall t \in [0; \pi], \ f(t) = t$$

Tracer f. Déterminer le développement en série de Fourier de f.

Début
Précédent
Suivant
Table
Plein écran
Fermer

3. Théorèmes de convergence d'une série de Fourier

3.1. Convergence quadratique : la formule de Parseval

Théorème 5.

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction T-périodique et continue par morceaux sur \mathbb{R} . Alors la série numérique $\sum_{n\geq 1} (a_n^2(f) + b_n^2(f))$ converge et l'on a

$$\frac{1}{T}\int_0^T (f(t))^2 \mathrm{d}t = a_0^2(f) + \frac{1}{2}\sum_{n=1}^{+\infty} \left(a_n^2(f) + b_n^2(f)\right). \quad \text{(Identit\'e de Parseval)}$$

Exemple. Soit f la fonction 2π périodique qui vaut 1 sur l'intervalle $[0, \pi[$ et 0 sur l'intervalle $[\pi, 2\pi[$.

Exercice 2

Soit la fonction f paire et 2π -périodique telle que :

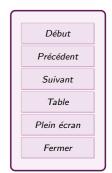
$$\forall t \in [0; \pi], \ f(t) = t$$

Appliquer le théorème de Parseval à f. On rappelle que $a_0 = \frac{\pi}{2}$ et $a_{2k+1} = \frac{-4}{(2k+1)^2\pi}$, tous les autres coefficients de Fourier de f étant nuls.

3.2. Premier théorème de convergence de Dirichlet

Notation. Soit $f: \mathbb{R} \to \mathbb{R}$. Pour tout $x \in \mathbb{R}$, on note les limites à droite et à gauche de f en x par :

$$f(t+0) = \lim_{x \to t^+} f(x)$$
 et $f(t-0) = \lim_{x \to t^-} f(x)$



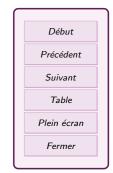
Théorème 6.

Soit $f: \mathbb{R} \to \mathbb{R}$, T-périodique et de classe C^1 par morceaux. Soit S(f) sa série de Fourier.

Pour tout $t \in \mathbb{R}$, la série de Fourier de f converge et on a :

- S(f)(t) = f(t) en tout point t où f est continue
- $S(f)(t) = \frac{f(t-0)+f(t+0)}{2}$ aux points t où f n'est pas continue, avec $f(t+0) = \lim_{x\to t^+} f(x)$ et $f(t-0) = \lim_{x\to t^-} f(x)$. (C'est-à-dire le milieu entre la valeur à gauche de t et la valeur à droite).

Exemple.



3.3. Deuxième théorème de convergence de Dirichlet

Théorème 7.

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction T-périodique, de classe \mathcal{C}^1 par morceaux et continue sur \mathbb{R}).

On note S(f) la série de Fourier de f, et $(a_n(f))_{n\in\mathbb{N}}$ et $(b_n(f))_{n\in\mathbb{N}^*}$ ses coefficients de Fourier. La série de Fourier de f converge en tout point de \mathbb{R} et l'on a

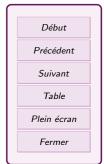
$$\forall t \in \mathbb{R}, \quad S(f)(t) = f(t).$$

De plus, les séries $\sum a_n(f)$ et $\sum b_n(f)$ sont <u>absolument</u> convergentes. Et pour tout $x,y\in\mathbb{R}$, l'intégrale $\int_x^y f(t) \mathrm{d}t$ s'obtient en intégrant terme à terme la série de Fourier de f, c'est-à-dire

$$\int_{x}^{y} f(t)dt = \int_{x}^{y} a_0(f)dt + \sum_{n=1}^{+\infty} \int_{x}^{y} (a_n(f)\cos(\omega nt) + b_n(f)\sin(\omega nt)) dt$$

$$= (y - x)a_0(f)$$

$$+\sum_{n=1}^{+\infty} \frac{1}{\omega n} \Big[a_n(f)(\sin(\omega ny) - \sin(\omega nx)) + b_n(f)(\cos(\omega nx) - \cos(\omega ny)) \Big].$$



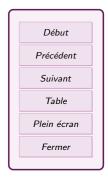
Exercice 3

Soit la fonction f paire et 2π -périodique telle que :

$$\forall t \in [0; \pi], \ f(t) = t$$

Appliquer le théorème de Dirichlet à f et évaluer la série de Fourier pour t=0. On rappelle que

$$S(f)(t) = \frac{\pi}{2} + \sum_{k \ge 0} \frac{-4}{(2k+1)^2 \pi} \cos(2p+1)t$$



4. Forme exponentielle des coefficients de Fourier

Propriété 8.

Soit f une fonction T-périodique et continue par morceaux. On peut définir les coefficients de Fourier complexes $(c_n(f))_{n\in\mathbb{Z}}$ de f de la façon suivante :

$$c_n(f) = \frac{1}{T} \int_0^T f(t) e^{-in\omega t} dt.$$

La série de Fourier de f s'écrit alors (quand elle converge) :

$$\forall t \in \mathbb{R}, \ S(f)(t) = \sum_{k=-\infty}^{\infty} c_k(f) e^{ik\omega t}.$$

Remarque : Pour n=0, on a $c_0(f)=a_0(f)$. Pour $n\in\mathbb{N}$, en décomposant $e^{-in\omega t}=\cos(n\omega t)-i\sin(n\omega t)$, on trouve

$$c_n(f) = \frac{1}{2}(a_n(f) - ib_n(f))$$
 et $c_{-n}(f) = \frac{1}{2}(a_n(f) + ib_n(f))$

On remarque alors que pour tout $n \in \mathbb{N}^*$, $c_{-n}(f) = \overline{c_n(f)}$.

Il est parfois plus facile de calculer les coefficients $(c_n(f))_{n\in\mathbb{Z}}$ à l'aide de la formule intégrale que les coefficients $(a_n(f))_{n\in\mathbb{N}}$ et $(b_n(f))_{n\in\mathbb{N}^*}$. On peut ensuite retrouver ces coefficients à l'aide de la formule suivante :

$$a_0(f) = c_0(f)$$
, et $\forall n \in \mathbb{N}^*$,
$$\begin{cases} a_n(f) = c_n(f) + c_{-n}(f) \\ b_n(f) = i(c_n(f) - c_{-n}(f)). \end{cases}$$

Dans ce cadre, l'identité de Parseval est la suivante :

Soit $f:\mathbb{R}\to\mathbb{R}$ une fonction T-périodique et continue par morceaux sur $\mathbb{R}.$ Alors

$$\frac{1}{T} \int_0^T (f(t))^2 dt = (c_0(f))^2 + \sum_{n=1}^{+\infty} (|c_{-n}(f)|^2 + |c_n(f)|^2).$$

En effet, pour tout $n \in \mathbb{N}^*$, $|c_{-n}(f)|^2 + |c_n(f)|^2 = 2 \times |c_n(f)|^2 = \frac{1}{2} \times [(a_n(f))^2 + (b_n(f))^2]$.

5. TD 30 Série de Fourier

Exercice 1

On considère la fonction 2π périodique f, telle que :

$$\forall t \in]-\pi;\pi], f(t) = e^t.$$

- 1. Tracer le graphe de f.
- 2. Déterminer le développement en série de Fourier de f et sa valeur en tout point $t \in \mathbb{R}$.
- 3. En utilisant le théorème de Dirichlet ou le théorème de Parseval, calculer les sommes suivantes : $A = \sum_{n=0}^{+\infty} \frac{1}{n^2 + 1}$ et $B = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n^2 + 1}$.

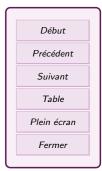
Exercice 2

On considère la fonction 2π périodique f, impaire, telle que :

$$\forall t \in [0; \pi], \ f(t) = \sin^2(t).$$

- 1. Tracer le graphe de f.
- 2. Déterminer le développement en série de Fourier de f et sa valeur en tout point $t \in \mathbb{R}$.
- 3. En utilisant le théorème de Dirichlet ou le théorème de Parseval, calculer les sommes suivantes :

$$A = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n-1)(2n+1)(2n+3)} \text{ et } B = \sum_{n=0}^{+\infty} \frac{1}{(2n-1)^2(2n+1)^2(2n+3)^2}.$$



Exercice 3

Montrer que pour tout $t \in \mathbb{R}$, on a

$$|\cos(2t)| = \frac{2}{\pi} + \sum_{n=1}^{+\infty} \frac{4(-1)^{n+1}}{\pi(4n^2 - 1)} \cos(4nt)$$

Exercice 4

On considère la fonction 2π périodique f, telle que :

$$\forall t \in [0; 2\pi[, f(t) = t^2.$$

- 1. Tracer le graphe de f.
- 2. Déterminer le développement en série de Fourier de f et sa valeur en tout point $t \in \mathbb{R}$.
- 3. En utilisant le théorème de Dirichlet ou de Parseval, calculer les sommes suivantes :

$$A = \sum_{n=1}^{+\infty} \frac{1}{n^2}, \ B = \sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2}, \ C = \sum_{n=1}^{+\infty} \frac{1}{n^4}.$$

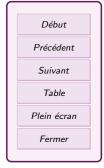


Table des matières

1	Intégrale d'une fonction périodique	1
2	Coefficients de Fourier et série de Fourier 2.1 Définitions générales	2 2 3
3	Théorèmes de convergence d'une série de Fourier 3.1 Convergence quadratique : la formule de Parseval	4 4 4 6
4	Forme exponentielle des coefficients de Fourier	7
5	TD 30 Série de Fourier	9

